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1
Probability

1.1 Introduction

The idea of probability underlies statements such as: ‘Rain is likely today’, ‘This egg
is probably infected with salmonella’, and so on. These uses of probability can be
expressed mathematically in various ways. Here, we start with the concept of an
experiment, which is any procedure that has a well-defined set of outcomes; the set
of outcomes is called the sample space. Subsets of the sample space are called events,
and statements like those above typically assess how likely an event is to occur. The
collection of events of interest is the event space, and probability is a function
defined on each event in the event space. By convention a probability can be any
number between zero and one, inclusive.

Of course the brief summary above calls for much explanation and elaboration. In
the next few sections of this chapter we shall provide a few simple rules (or axioms)
defining the properties of events and their probabilities. This choice of rules is
guided by our experience of real events and their likelihoods, but our experience and
intuition cannot prove that these rules are true or say what probability ‘really’ is.
What we can say is that, starting with these rules, we can derive a theory that
provides an elegant and accurate description of many random phenomena, ranging
from the behaviour of queues in supermarkets to the behaviour of nuclear reactors.

1.2 Events

Suppose we are considering some experiment such as tossing a coin. To say that the
experiment is well-defined means that we can list all the possible outcomes; in the
case of a tossed coin the list reads: {head, tail}. For a general (unspecified)
experiment any particular outcome is denoted by w; the collection of all outcomes is
called the sample space and is denoted by €.

Any specified collection of outcomes in Q is called an event. Upper case letters
such as A, B, C, are used to denote events; these may have suffices or other
adornments such as A;, B, C*, and so on. If the outcome of the experiment is w,
and we A, then A is said to occur. The set of outcomes not in A is called the
complement of A, and is denoted by A°.

In particular, the event which contains all possible outcomes is the certain event,

1
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2 1 Probability

and is denoted by Q. Also, the event containing no outcomes is the impossible event
and is denoted by ¢. Obviously ¢ = Q°.

Example: Coins If a coin is tossed once, then Q = {head, tail}. In line with the
notation above, we usually write

Q={H, T}

The event that the coin shows a head should strictly be denoted by {H}, but in
common with most other writers we omit the braces in this case, and denote a head
by H. Obviously H°=T,and T° = H.

Likewise, if a coin is tossed twice, then

Q = {HH, HT, TH, TT},

and so on. This experiment is performed even more often in probability textbooks
than it is in real life. o

Since events are sets we use the usual notation for combining them, thus:

A N B denotes outcomes in both A and B, their intersection;

A U B denotes outcomes in either A or B or both, their union;

A A B denotes outcomes in either A or B, but not both, their symmetric
difference;

A\B denotes outcomes in A which are not in B, their difference;

U A; denotes outcomes which are in at least one of the countable
j=1

collection (A;; j = 1), their countable union;

[Countable sets are in one—one correspondence with a subset of the positive

integers. |

A C B denotes that every outcome in A is also in B, this is inclusion;

A ={w, w», ws,...,w,} denotes that the event A consists of the outcomes
Wiy ovvy Wy

A X B denotes the product of A and B, that is the set of all ordered pairs
(w,, wp) where w, € A and w,, € B.

These methods of combining events give rise to many equivalent ways of denoting an
event. Some of the more useful identities for any events A and B are:

A A B=(AN B)U (AN B)
A=(ANB)U(AN B)
A\B=AnN B
A= Q\A
AN A= ¢
AUA=Q.

These are all easily verified by checking that every element of the left hand side is
included in the right hand side, and vice versa. You should do this.
Such relationships are often very conveniently represented by simple diagrams.
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We illustrate this by providing some basic examples in Figures 1.1 and 1.2. Similar
relationships hold between combinations of three or more events and some of these
are given in the problems at the end of this chapter.

When A N B = ¢ we say that A and B are disjoint (or mutually exclusive).

L X

AL‘

Figure 1.1 The interior of the rectangle represents the sample space Q, and the interior of
the circle represents an event A. The point w represents an outcome in the event A¢. The
diagram clearly illustrates the identities AU A = Q and Q\A = Ac.

B\A

(AU B)‘=A“N B¢

Figure 1.2 ~ The interior of the smaller circle represents the event Aj; the interior of the

larger circle represents the event B. The diagram illustrates a number of simple relation-

ships; for example, the region common to both circles is A N B = (A¢ U B)c. For another
example, observe that A A B = A¢ A Be.

(7) Example A die* is rolled. The outcome is one of the integers from 1 to 6. We

may denote these by {w;, s, w3, wy, ws, W}, or more directly by {1, 2,3,4,5,6},
as we choose. Define:

A the event that the outcome is even,

B the event that the outcome is odd,

C the event that the outcome is prime,

D the event that the outcome is perfect (a perfect number is the sum of its
prime factors).

*Unless otherwise specified, a die is always a cube bearing the numbers 1, 2, 3, 4, 5 and 6 on its faces, one
to each face.
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4 1 Probability

Then the above notation compactly expresses obvious statements about these events.
For example:

ANB=¢ AUB=Q
AN D= {ws} \4 = B\{w,}

and so on. o

It is natural and often useful to consider the number of outcomes in an event A. This
is denoted by {A|, and is called the size or cardinality of A.

It is straightforward to see, by counting the elements on each side, that size has
the following properties.

If A and B are disjoint then
|A U Bl =|A| + B,
and more generally, for any A and B
|AUB|+|AN B|=|A| +|B|.
If A C B then
Al <8
For the product 4 x B,
1A x Bl = |A]|B|.
Finally
9| = 0.

Example The Shelmikedmu are an elusive and nomadic tribe whose members are
unusually heterogeneous in respect of hair and eye colour, and skull shape. A
persistent anthropologist establishes the following facts:

(i)  75% have dark hair, the rest have fair hair;

(i)  80% have brown eyes, the rest have blue eyes;

(ili) no narrow-headed person has fair hair and blue eyes;

(iv) the proportion of blue-eyed broad-headed tribespeople is the same as the
proportion of blue-eyed narrow-headed tribespeople;

(v) those who are blue-eyed and broad-headed are fair-haired or dark-haired in
equal proportion;

(vi) half the tribe is dark-haired and broad-headed;

(vii) the proportion who are brown-eyed, fair-haired and broad-headed is equal to
the proportion who are brown eyed, dark-haired and narrow-headed.

The anthropologist also finds n, the proportion of the tribe who are narrow-headed,
but unfortunately this information is lost in a clash with a crocodile on the difficult
journey home. Is another research grant and field trip required to find n?
Fortunately not, if the anthropologist uses set theory. Let



1.2 Events 5

B be the set of those with blue eyes
C the set of those with narrow heads
D the set of those with dark hair.

Then the division of the tribe into its heterogeneous sets can be represented by
Figure 1.3. This type of representation of sets and their relationships is known as a
Venn diagram. The proportion of the population in each set is denoted by the lower
case letter in each compartment, so

a=|B°N C" N DQ|,
b =|B N C N D9,
and so on. The required proportion having narrow heads is
n=|C|/|Ql=e+f+g+h

and of course a+b+c+d+e+ f+ g+ h=1 The information in (i)-(vii),
which survived the crocodile, yields the following relationships:

() c+d+e+ f=0.5
(ii) a+d+e+h=038
(iii) g=0
(iv) ftg=b+c
v) b=c
(vi) c+d=05
(vii) a=c¢e

BnC°nD° BNnC°ND

B°nC°nD°* B°nC‘nD

Figure 1.3 Here the interior of the large circle represents the entire tribe, and the interior

of the small circle represents those with narrow heads. The part to the right of the vertical

line represents those with dark hair, and that part above the horizontal line represents those

with blue eyes. Thus the shaded quadrant represents those with blue eyes, narrow heads and

fair hair, and as it happens this set is empty by (iii). That is to say BN C N D¢ = ¢, and so
g=0.
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The anthropologist (who has a pretty competent knowledge of algebra) solves this
set of equations to find that

n=e+f+g+h=e+f+h=015+0.1+0.05=03

Thus three tenths of the tribe are narrow-headed. o

This section concludes with a technical note (which you may omit on a first reading).
We have noted that events are subsets of Q. A natural question is, which subsets of
€ are entitled to be called events?

It seems obvious that if A and B are events then all of A U B, A°, A N B, and so
on should be entitled to be events also. This is a bit vague, to be precise, we say that
a subset A of Q can be an event if it belongs to a collection (F of subsets of Q
obeying the following three rules:

Qe F
if A € (F then A€ e (F,;

if A;e (Fforj=1,then |J 4; € 7.
j=1

The collection (7 is called an event space, or a o-field.
Notice that using (1)—(6) shows that if A and B are in (7 then so are A\B, A A B
and A N B.

Example (7) revisited It is easy for you to check that {¢, A, B, Q} is an event
space, and {¢, A U C, B\C, Q} is an event space. However, {¢, A, Q} and {¢§, 4, B, D,
Q} are not event spaces. o

In general, if Q is finite it is quite usual to take (F to be the collection of all subsets
of Q, which is clearly an event space. If Q is infinite then this collection is sometimes
too big to be useful, and some smaller collection of subsets is required.

1.3 Symmetry and probability

Following the program sketched out in Section 1.1, our next task is to assign a
probability P(A) to any event A in the event space (#, and then to define the
relationships between these probabilities. In this we are guided by experience and
intuition.

Since childhood, for most of us, our intuition has been strongly guided by a special
class of experiments which are possessed of an intrinsic symmetry. When rolling a
well-made die, we feel intuitively that the symmetries of the die (under reflections
and rotations) should find empirical expression in each face being equally likely to
end uppermost. Using the notation of Example 1.2.7, and writing P({w;}) for the
probability that the jth face is uppermost, this entails

P({w}) = P({wj})’
P({wl’ 0}2}) = P({w3’ w4})a
and so on.
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Recalling the convention that probabilities lie between zero and one, it is tempting
and natural, given an event A, to set

Al
p(4) = 14,

[e]
so that for any A C Q, we do indeed have

0=<P(A) =1

Example (1.2.7) revisited With the probability of any event now defined by (1), it
is elementary to find the probability of any of the events that may occur when we
roll a die. The probability that it shows an even number is

Al 3 _1
P(A) =P{w, wy, wg}) = — ===,
(A) = P({w,, w4, we}) o 6 2
Likewise, and equally trivially, we find that
P(odd) = P(B) = %

P(prime) = P(C) = P({ 0y, o, 05)) = 5

P(perfect) = P(D) = P({wg)) = é

These values of the probabilities are not inconsistent with our ideas about how the
symmetries of this die should express themselves when it is rolled. @

Recalling the properties of the size |A| of an event A, listed in (1.2.8), (1.2.9),
(1.2.10) and (1.2.12), we see that the function P(.) defined by (1) has the following
properties.

For any events A and B

P(A U B) + P(A N B) =P(A) + P(B).
In particular, if A and B are disjoint then
P(A U B) = P(A) + P(B).

More generally, if A1, As, ..., A, form a collection of disjoint events (which is to
say that A; N A; = ¢ when i # j), then

n n
P(UAi) = S P(A).
i=1 i=1
This property (5) is known as finite additivity .
If A C B, then
P(A) < P(B)
and finally
P(¢) =0.

Once again, these statements are quite consistent with our intuition about
likelihoods.
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Historically the theory of probability has its roots firmly based in just this kind of
speculation about games of chance employing cards, dice and lotteries.

Example Three dice are rolled and the numbers on the upper faces are added
together. The outcomes 9 and 10 can each be obtained in six distinct ways, thus:

10=1+3+6=1+4+5=24+24+6=2+3+5=2+4+4=3+3+4
9=14+2+6=1+3+5=1+4+4=24+24+5=2+3+4=3+3+3.

Some time before 1642, Galileo was asked to explain why, despite this, the outcome
10 is more likely than the outcome 9, as shown by repeated experiment. He
observed that the sample space Q has in fact 6 = 216 outcomes, being all possible
triples of numbers from 1 to 6. Of these, 27 sum to 10, and 25 sum to 9, so
P(10) = &% and P(9) = 2.

This provides an explanation for the preponderance of 10 over 9. ®

It is just this kind of agreement between theory and experiment that justifies our
rather arbitrary adoption of rules (4)—(7) above. We shall see many more examples
of this.

1.4 Properties of probability

Most experiments do not possess strong symmetry, nor is it often plausible on other
grounds that all outcomes should be equally likely. We are nevertheless still faced
with the problem of defining a probability function P(.): (#— [0, 1] so that P(A)
tells us how likely the event A is to occur.

Here our intuition doesn’t tell us much. However, it seems unthinkable that our
function, when we produce it, should not be relevant when we roll a die. It is thus
natural and convenient, and as you will discover very rewarding, to make the
following definition, guided by the discussion of Section 1.3.

Definition  The function P(.): (7 — [0, 1] is a probability function if
P(A)=0forall A € (F,

P(Q)=1
and - °
P(UA,-) = SP(4)
j=1 j=1
whenever Ay, A,, ... are disjoint events (which is to say that 4; N A; = ¢ whenever
[ # j). A

In passing, we note that (3) is known as the property of countable additivity.
Obviously it implies finite additivity so that, in particular, if A N B = ¢, then
P(A U B) =P(A) + P(B).

From these three rules we can derive many important and useful relationships, for
example:

P(¢) =0,
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1.4 Properties of probability 9

P(AS) =1 — P(A),
P(A\B) = P(A) — P(A N B),
P(A U B) = P(A) + P(B) — P(A N B),
1 1 i<j i<j<k
+()"MPAIN AN N A

The following examples begin to demonstrate the importance and utility of (1)-(8).

Example Let us prove (4), (5) and (7) above. First, by (2) and (3), for any
Ae(f,

1=P(Q) = P(A U A°) = P(A) + P(A9)
which proves (5). Now setting A = Q establishes (4). Finally, using (3) repeatedly
we obtain

P(B) = P(B N A) + P(B N A°),
and
P(A U B) = P(A4 U (B N A%) = P(A) + P(B N A°) = P(A) + P(B) — P(B N A)
by (1),
which proves (7). o

You should now prove (6) as an elementary exercise; the proof of (8) is part of
Problem 12.

Example: Inequalities for P(.) (i) If AC Bthen BN A = A, so from (10)

P(B) = P(A) + P(B N A°) =P(A) by (1).
(ii) For any A, B we have Boole’s inequalities
P(A)+P(B)=P(A U B) by (7) -
= max {P(A), P(B)} by part (i)
=P(ANB) by part (i) again
=zP(A)+P(B) -1 by (7) again.

Example: Lottery An urn contains 1000 lottery tickets numbered from 1 to 1000.
One is selected at random. A fairground performer offers to pay $3 to anyone who
has already paid him $2, if the number on the ticket is divisible by 2, 3 or 5. Would
you pay him your $2 before the draw? (If the ticket number is not divisible by 2, 3 or
5 you lose your $2.)

Solution Let D, be the event that the number drawn is divisible by k. Then

500 1
P(D2) = 1000~ 2
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and so on. Also

166
P(D, N D) =P(Dy) = —
(D, 3) = P(Dg) 1000

and so forth. Using (8) with n = 3, and making several similar calculations we have
P(D2 U D3 U D5) = P(DQ) + P(D3) + P(Ds) + P(D2 N D3 N D5)
—P(D; N D3) = P(D3 N Ds) — P(D, N Ds)

= 1073(500 + 333 + 200 + 33 — 166 — 66 — 100) = %.
The odds on winning are thus better than 2:1, and you should accept his very
generous offer. o

1.5 Sequences of events

This section is important, but may be omitted at a first reading.

Very often we will be confronted by an infinite sequence of events (A4,; n = 1) such
that A = lim,_,» A, exists. In particular, if A, C A, for all n then

lim 4, =4, = 4,
n—o0

j=1
and A is an event by (1.2.16). It is of interest, and also often useful, to know P(A).
The following theorem is therefore important as well as attractive.

Theorem IfA,CA,.eFforalln=1,and A =lim,_,. A,, then
P(A) = lim P(A4,).

Proof  Since A, C A1, we have (A 1\A;) N (A \Ay) = ¢, for k + j. Also,
setting Ag = ¢

1

Furthermore,
P(An+1\An) = l)(An+1) - P(An)-

Hence, since Ay = ¢

P(4) = P(lim4,) = P(U 4,,\4)

n—>0 j=0
= 2 P(4,,,\4) by (1.4.3)
i=0
= lim P(4,) by (3). [ ]

n—>00

From this result it is a simple matter to deduce that if A,, D A, . for all n then
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lin}o P(A,) = P(A).

With a bit more work one can show more generally that if lim,_,, A, = A, then
(4) is still true. Because of this, the function P(.) is said to be a continuous set
function.

1.6 Remarks

Simple problems in probability typically require the calculation of the probability
P(E) of some event E, or at least the calculation of bounds for P(E). The
underlying experiment may be implicit or explicit; in any case the first step is always
to choose the sample space. (Naturally, we choose the one which makes finding
P(E) easiest.)

Then you may set about finding P(E) by using the rules and results of Section 1.4,
and the usual methods for manipulating sets. Useful aids at this simple level include
Venn diagrams, and identities such as de Morgan’s laws, namely:

n c n
(UA,-) = N4;
i=1 i=1
and
n [ n
(ﬂAi) = UA;]
i=1 i=1

These are readily established directly, or by induction as follows. First, draw a
Venn diagram to see that (A U B)° = A° N B,

n
Now if |J4; = B, then
j=1

n+1 c
(UA]) = (An+1 U Bn)c = Afl+l N Bﬁz
j=1

Hence (1) follows by induction on n. The result (2) can also be proved directly, or
by induction, or by using (1). You can do this, and you should do it now.

We end this section with a note for the more demanding reader. It has been
claimed above that probability theory is of wide applicability, yet most of the
examples in this chapter deal with the behaviour of coins, dice, lotteries and urns.
For most of us, weeks or even months can pass without any involvement with dice or
urns. (The author has never even seen an urn, let alone removed a red ball from
one.) The point is that such simple problems present their probabilistic features to
the reader unencumbered by strained assumptions about implausible models of
reality. The penalty for simplicity is that popular problems may become hackneyed
through overuse in textbooks. We take this risk, but reassure the reader that more
realistic problems feature largely in later chapters. In addition, when considering
some die or urn, students may be pleased to know that they are treading in the
footsteps of many very eminent mathematicians as they perform these calculations.
Euler or Laplace may have pondered over exactly the same difficulty as you, though
not for so long perhaps.
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WORKED EXAMPLES AND EXERCISES

1.7 Example: Dice

You roll two dice. What is the probability of the events:

(a) they show the same?
(b) their sum is seven or eleven?
(c) they have no common factor greater than unity?

Solution First we must choose the sample space. A natural representation is as
ordered pairs of numbers (i, j), where each number refers to the face shown by one
of the dice. We require the dice to be distinguishable (one red and one green say),
so that 1 <i =<6 and 1 < j < 6. Because of the symmetry of a perfect die, we assume
that these 36 outcomes are equally likely.

(a) Of these 36 outcomes, just 6 are of the form (i, i), so using (1.3.1) the required
probability is

(b) There are 6 outcomes of the form (i, 7 — i), whose sum is 7, so the probability
that the sum is 7 is % = %.

There are 2 outcomes whose sum is 11, namely (5, 6) and (6, 5), so the probability
that the sum is 11 is % =1

Hence, using (1.4.3), the required probability is % + % = %.

(c) It is routine to list the outcomes which do have a common factor greater than
unity. They are thirteen in number, namely:

{(i’ D;i=2}, (2, 4), 4,2), (2, 6), (6,2), (3, 6), (6, 3), (4, 6), (6, 4).
This is the complementary event, so by (1.4.5), the required probability is
1-B_2
36 36
Doing it this way gives a slightly quicker enumeration than the direct approach.

Exercise What is the probability that the sum of the numbers is 2, 3, or 12?

Exercise What is the probability that:

(a) the sum is odd?

(b) the difference is odd?

(c) the product is odd?

Exercise What is the probability that one number divides the other?

Exercise What is the probability that the first die shows a smaller number than the second?
Exercise What is the probability that different numbers are shown and the smaller of the
two numbersis r, 1 < r <6?

Remark It was important to distinguish the two dice. Had we not done so, the
sample space would have been {(i, j); 1 <i{ < j < 6}, and these 21 outcomes are not
equally likely, either intuitively or empirically. Note that the dice need not be
different colours in fact, it is enough for us to be able to suppose that they are.
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1.8 Example: Urn

An urn contains n heliotrope and n tangerine balls. Two balls are removed from the
urn together, at random.

(a) What is the sample space?
(b) What is the probability of drawing two balls of different colours?
(c) Find the probability p, that the balls are the same colour, and evaluate lim p,.

n—o

Solution (a) As balls of the same colour are otherwise indistinguishable, and they
are drawn together, a natural sample space is Q = { HH, HT, TT}.

(b) The outcomes in Q exhibit no symmetry. Taking our cue from the previous
example, we choose to distinguish the balls by numbering them from 1 to 2n, and
also suppose that they are drawn successively. Then the sample space is the
collection of ordered pairs of the form (i, j) where 1< i, j <2n, and i # j, because
we cannot pick the same ball twice. These 2n(2n — 1) outcomes are equally likely,
by symmetry. In n? of them we draw heliotrope followed by tangerine, and in n* we
draw tangerine followed by heliotrope. Hence

n* + n? _ n

F(HT) = 2n@2n -1 2n-1

(c) By (1.4.5)
—1_pHT)= "—1
pn=1=P(HT) 2n -1

1
— = asn-— o,

Exercise Find P(HH) when the sample space is taken to be all unordered pairs of
distinguishable balls.

Exercise What is the probability that (a) the first ball is tangerine? (b) the second ball is
tangerine?

Exercise Half the balls are removed and placed in a box. One of those remaining in the
urn is removed. What is the probability that it is tangerine?

Exercise A fair die with n sides is rolled. If the rth face is shown, r balls are removed from
the urn and placed in a bag. What is the probability that a ball removed at random from the
bag is tangerine?

1.9 Example: Cups and saucers

A teaset has four cups and saucers with two cups and saucers in each of two different
colours. If the cups are placed at random on the saucers, what is the probability that
no cup is on a saucer of the same colour?

Solution 1 Call the colours azure and blue; let A be the event that an azure cup is
on an azure saucer, and B the event that a blue cup is on a blue saucer. Since there
are only two places for blue cups not to be on blue saucers, we see that A occurs if
and only if B occurs, so A = B and

P((A U B)°) = P(A°) = 1 — P(A).
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Now P(A) =P(A, U A,), where A; and A, denote the events that the first and
second azure cups respectively are on azure saucers. There are 24 equally probable
ways of putting the four cups on the four saucers. In 12 of them A; occurs; in 12 of
them A, occurs; and in 4 of them A; N A, occurs, by enumeration.

Hence, by (1.4.7),

2,12_4

P(A) =
(4) 24 24 24

>
6 b
and the required probability is %.

Solution I1 Alternatively, instead of considering all the ways of placing cups on
saucers, we may consider only the distinct ways of arranging the cups by colour with
the saucers fixed. There are only six of these, namely:

aabb; abba; abab; baab; baba; bbaa;

and by symmetry they are equally likely. By inspection, in only one of these
arrangements is no cup on a saucer of the same colour, so the required probability
.1
1S z.

Remark In this example, considering a smaller sample space makes the problem
easier. This is in contrast to our solutions to Examples 1.7 and 1.8 where we used
larger sample spaces to simplify things.

Exercise What is the probability that exactly

(a) one cup is on a saucer of the same colour?

(b) two cups are on saucers of the same colour?

Exercise What is the probability that no cup is on a saucer of the same colour if the set
comprises four cups and saucers in four distinct colours?

1.10 Example: Sixes

Three players, Achilles, Briseis and Chryseis, take it in turns to roll a die in the
order ABC, ABC, A ... Each player drops out of the game immediately upon
throwing a six.

(a) What is the sample space for this experiment?

(b) Suppose the game stops when two players have rolled a six. What is the sample
space for this experiment?

(c) What is the probability that Achilles is the second player to roll a six?

(d) Let D, be the event that the third player to roll a six does so on the nth roll.
Describe the event E given by

==(Un)

c

Solution (a) Let U be the collection of all sequences x;, ..., x, for all n =1,
such that
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xje€{l,2,3,4,5} forls<j<n,
X, = 6.

Then each player’s rolls generate such a sequence, and the sample space consists of
all selections of the triple (uq, u,, u3) where u; € U for 1 <i=<3. We may denote
thisby U X U X U, or even U3 if we wish.

(b) Let V be the collection of all sequences x4, X3, . . ., X,, for n = 1, such that

xje{1,2,3,4,5} forl<js=n.

Then the sample space consists of two selections uq, u, from U, corresponding to
the players who roll sixes, and one selection v from V corresponding to the player
who does not. The length of v equals the longer of u; and u, if this turn in the round
comes before the second player to get a six, or it is one less than the longer of u; and
u, if this turn in the round is later than the second player to get a six.

(c) Despite the answers to (a) and (b) we use a different sample space to answer
this question. Suppose that the player who is first to roll a six continues to roll the
die when the turn comes round, these rolls being ignored by the others. This does
not affect the respective chances of the other two to be the next player (of these two)
to roll a six. We therefore let Q be the sample space consisting of all sequences of
length 3r + 1, for r = 0, using the integers 1, 2, 3, 4, 5 or 6. This represents 3r + 1
rolls of the die, and by the assumed symmetry the 63"*! possible outcomes are all
equally likely for each r.

Suppose Achilles is the second player to roll a six on the 37 + 1th roll. Then his
r + 1 rolls include no six except his last roll; this can occur in 5" ways. If Briseis was
first to roll a six, then her r rolls include at least one six; this may be accomplished in
6" — 5" ways. In this case Chryseis rolled no six in r attempts; this can be done in 5"
ways. Hence Achilles is second to Briseis in 57.57.(6” — 5") outcomes. Likewise he is
second to Chryseis in 57.5".(6" — 57) outcomes. Hence the probability that he is
second to roll a six on the 37 + 1th roll is

_ 26" = 515"

-y , forr=1.
6)‘

By (1.4.3) therefore, the total probability that Achilles is second to roll a six is the
sum of these, namely

d 300
21 1001

(d) The event Uj_;D, is the event that the game stops at the nth roll for some
n = 1. Therefore E is the event that they never stop.

Exercise For each of the three players, find the probability that he or she is the first to roll
a six.

Exercise Show that P(E) = 0.

Exercise Find the probability that the Achilles rolls a six before Briseis rolls a six. [Hint:
use a smaller sample space.]

Exercise Show that the probability that Achilles is last to throw a six is 1001 Are you
surprised that he is more likely to be last than to be second?
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Remark  The interesting thing about the solution to (c) is that the sample space Q
includes outcomes that are not in the original experiment, whose sample space is
described in (a). The point is that the event in question has the same probability in
the original experiment and in the modified experiment, but the required probability
is obtained rather more easily in the second case because the outcomes are equally
likely. This idea of augmenting the sample space was first used by Pascal and Fermat
in the seventeenth century.

In fact we shall find easier methods for evaluating this probability in Chapter 2,
using new concepts.

1.11 Example: Family planning

A woman planning her family considers the following schemes, on the assumption
that boys and girls are equally likely at each delivery:

(a) have three children;

(b) bear children until the first girl is born or until three are born, whichever is
sooner, and then stop;

(c) bear children until there is one of each sex or until there are three, whichever is
sooner and then stop.

Let B; denote the event that i boys are born, and let C denote the event that more
girls are born than boys. Find P(B;) and P(C) in each of the cases (a) and (b).

Solution (a) If we do not consider order there are four distinct possible families:
BBB; GGG; GGB; BBG, but these are not equally likely. With order included,
there are eight possible families in this larger sample space:

{BBB; BBG; BGB; GBB; GGB; GBG; BGG; GGG} =Q

and by symmetry the;r are equally likely. Now, by (1.3.1), P(B;) = % and P(C) = 1.
The fact that P(C) = 5 is also clear by symmetry.

Now consider (b). There are four possible families: F; = G, F, = BG, F; = BBG,
and F, = BBB.

Once again these outcomes are not equally likely, but as we have now done
several times we can use a different sample space. One way is to use the sample
space in (1), remembering that if we do this then some of the later births are
fictitious. The advantage is that outcomes are equally likely by symmetry. With this
choice F; corresponds to { BGG U BGB} and so P(B;) = P(F,) = % Likewise F; =
{GGG U GGB U GBG U GBB} and so P(C) = 1.

Exercise Find P(B,) and P(C) in case (c).

Exercise Find P(B;) and P(B,) in all three cases.

Exercise Let E be the event that the completed family contains equal numbers of boys and
girls. Find P(E) in all three cases.
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1.12 Example: Craps

You roll two fair dice. If the sum of the numbers shown is 7 or 11 you win, if it is 2, 3
or 12 you lose. If it is any other number j, you continue to roll two dice until the sum
is j or 7, whichever is sooner. If it is 7 you lose, if it is j you win. What is the
probability p that you win?

Solution Suppose that you roll the dice » times. That experiment is equivalent to
rolling 2n fair dice, with the sample space Q,, being all possible sequences of length
2n, of the numbers 1, 2, 3, 4, 5, 6, for any n = 1. By symmetry these 6°" outcomes
are equally likely, and whether you win or you lose at or before the nth roll of the
pair of dice is determined by looking at the sum of successive pairs of numbers in
these outcomes.

The sample space for the roll of a pair of dice (), has 36 equally likely
outcomes. Let n; denote the number of outcomes in which the sum of the numbers
shown is j, 2 < j < 12. Now let A; be the event that you win by rolling a pair with
sum k, and consider the eleven distinct cases:

(a) P(A4;) = P(4;3) = P(Ay) = 0,

because you always lose with these.
(b) For A5 to occur you must get 7 on the first roll. Since n; =6

P(A;) = 11 = 6_1
Q] 36 6
(c) Likewise
ny 2 1 .
P(Ay)) = — == =" since ny; = 2.
(A1) % 3% 18 1

(d) For A4 to occur you must get 4 on the first roll and on the nth roll, for some
n=2, with no 4 or 7 in the intervening n —2 rolls. You can do this in
n3(36 — ny — n;)" 2 ways, and therefore

o 2 _ _ n—2

P(A4) _ 2 n4(36 n24 n7)
n=2 6"

ni l

 36(ng + ny) 36

by (1.4.3)

because n, = 3.

(e) Likewise ,
n

P(As)= ——

’ 36(”5 + n7)
=2 because ns = 4

45
= P(Ay) because ng = 4.
Finally

P(Ag) = P(Ag)
el

because ng = ng =5
396
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and
P(Ay) = P(Ay) because nyg = 14 =3.
Therefore the probability that you win is

1,1 ,1,4,725
P(A7) + P(A}) + 2P(Ay) + 2P(As) + 2P(Ag) = =~ + — + — + — + =2
(An =+ Pldw) (49 (4s) (e) 6 18 18 45 198

= 0.493.

Exercise What is the probability that you win on or before the second roll?

Exercise What is the probability that you win on or before the third roll?

Exercise What is the probability that you win if, on the first roll,

(a) the first die shows 2?

(b) the first die shows 67

Exercise If you could fix the number to be shown by one die of the two on the first roll,
what number would you choose?

1.13 Example: Murphy’s law

A fair coin is tossed repeatedly. Let s denote any fixed sequence of heads and tails
of length r. Show that with probability one the sequence s will eventually appear in
r consecutive tosses of the coin.

[The usual statement of Murphy’s law says that anything that can go wrong, will
go wrong].

Solution If a fair coin is tossed r times, there are 2’ distinct equally likely
outcomes and one of them is s. We consider a fair die with 2" faces; each face
corresponds to one of the 2" outcomes of tossing the coin r times and one of them is
face s. Now roll the die repeatedly.

Let A, be the event that face s appears for the first time on the kth roll. There are
2% distinct outcomes of k rolls, and by symmetry they are equally likely. In
(2" = 1)¥71 of them A, occurs, so by (1.3.1)

ro_ k-1
P(A,) = %
2’

Since A, N A; = ¢ for k # j we have by (1.4.3) that
m m 27‘ _ 1 m
P(UAk) = SP(4) =1~ ( )
1 1 27
which is the probability that face s appears at all in m rolls.
Now consider n tosses of the coin, and let m = [5] (where [x] is the integer part of
x). The n tosses can thus be divided up into m sequences of length r with a

remainder n — mr. Let B, be the event that none of these m sequences is s, and let
C, be the event that the sequence s does not occur anywhere in the n tosses. Then

C,CB,= (UAk) ,
1

since rolling the die m times and tossing the coin mr times yield the same sample




